Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Eur J Med Genet ; 68: 104918, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38325642

RESUMEN

Increasingly, next-generation sequencing (NGS) is becoming an invaluable tool in the diagnosis of unexplained acute neurological disorders, such as acute encephalopathy/encephalitis. Here, we describe a brief series of pediatric patients who presented at the pediatric intensive care unit with severe acute encephalopathy, initially suspected as infectious or inflammatory but subsequently diagnosed with a monogenic disorder. Rapid exome sequencing was performed during the initial hospitalization of three unrelated patients, and results were delivered within 7-21 days. All patients were previously healthy, 1.5-3 years old, of Muslim Arab descent, with consanguineous parents. One patient presenting with acute necrotizing encephalopathy (ANEC). Her sister presented with ANEC one year prior. Exome sequencing was diagnostic in all three patients. All were homozygous for pathogenic and likely-pathogenic variants associated with recessive disorders; MOCS2, NDUFS8 and DBR1. Surprisingly, the initial workup was not suggestive of the final diagnosis. This case series demonstrates that the use of rapid exome sequencing is shifting the paradigm of diagnostics even in critical care situations and should be considered early on in children with acute encephalopathy. A timely diagnosis can direct initial treatment as well as inform decisions regarding long-term care.


Asunto(s)
Encefalopatías , Enfermedades del Sistema Nervioso , Femenino , Humanos , Niño , Lactante , Preescolar , Secuenciación del Exoma , Exoma/genética , Homocigoto , Encefalopatías/diagnóstico , Encefalopatías/genética
2.
Pacing Clin Electrophysiol ; 47(4): 503-510, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38375917

RESUMEN

INTRODUCTION: Arrhythmogenic cardiomyopathy (AC) is an inherited cardiomyopathy characterized by fibro-fatty replacement of cardiomyocytes, leading to life-threatening ventricular arrhythmia and heart failure. Pathogenic variants of desmoglein2 gene (DSG2) have been reported as genetic etiologies of AC. In contrast, many reported DSG2 variants are benign or variants of uncertain significance. Correct genetic variant classification is crucial for determining the best medical therapy for the patient and family members. METHODS: Pathogenicity of the DSG2 Ser194Leu variant that was identified by whole exome sequencing in a patient, who presented with ventricular tachycardia and was diagnosed with AC, was investigated by electron microscopy and immunohistochemical staining of endomyocardial biopsy sample. RESULTS: Electron microscopy demonstrated a widened gap in the adhering junction and a less well-organized intercalated disk region in the mutated cardiomyocytes compared to the control. Immunohistochemical staining in the proband diagnosed with AC showed reduced expression of desmoglein 2 and connexin 43 and intercalated disc distortion. Reduced expression of DSG2 and Connexin 43 were observed in cellular cytoplasm and gap junctions. Additionally, we detected perinuclear accumulation of DSG2 and Connexin 43 in the proband sample. CONCLUSION: Ser194Leu is a missense pathogenic mutation of DSG2 gene associated with arrhythmogenic left ventricular cardiomyopathy.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Cardiomiopatías , Taquicardia Ventricular , Humanos , Conexina 43/genética , Conexina 43/metabolismo , Displasia Ventricular Derecha Arritmogénica/genética , Cardiomiopatías/complicaciones , Mutación/genética , Arritmias Cardíacas/complicaciones , Taquicardia Ventricular/genética , Taquicardia Ventricular/complicaciones , Miocitos Cardíacos/metabolismo , Desmogleína 2/genética , Desmogleína 2/metabolismo
3.
Am J Kidney Dis ; 83(2): 183-195, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37717846

RESUMEN

RATIONALE & OBJECTIVE: Genetic etiologies have been identified among approximately 10% of adults with chronic kidney disease (CKD). However, data are lacking regarding the prevalence of monogenic etiologies especially among members of minority groups. This study characterized the genetic markers among members of an Israeli minority group with end-stage kidney disease (ESKD). STUDY DESIGN: A national-multicenter cross-sectional study of Israeli Druze patients (an Arabic-speaking Near-Eastern transnational population isolate) who are receiving maintenance dialysis for ESKD. All study participants underwent exome sequencing. SETTING & PARTICIPANTS: We recruited 94 adults with ESKD, comprising 97% of the total 97 Druze individuals throughout Israel being treated with dialysis during the study period. PREDICTORS: Demographics and clinical characteristics of kidney disease. OUTCOME: Genetic markers. ANALYTICAL APPROACH: Whole-exome sequencing and the relationship of markers to clinical phenotypes. RESULTS: We identified genetic etiologies in 17 of 94 participants (18%). None had a previous molecular diagnosis. A novel, population-specific, WDR19 homozygous pathogenic variant (p.Cys293Tyr) was the most common genetic finding. Other monogenic etiologies included PKD1, PKD2, type IV collagen mutations, and monogenic forms of noncommunicable diseases. The pre-exome clinical diagnosis corresponded to the final molecular diagnosis in fewer than half of the participants. LIMITATIONS: This study was limited to Druze individuals, so its generalizability may be limited. CONCLUSIONS: Exome sequencing identified a genetic diagnosis in approximately 18% of Druze individuals with ESKD. These results support conducting genetic analyses in minority populations with high rates of CKD and for whom phenotypic disease specificity may be low. PLAIN-LANGUAGE SUMMARY: Chronic kidney disease (CKD) affects many people worldwide and has multiple genetic causes. However, there is limited information on the prevalence of genetic etiologies, especially among minority populations. Our national-multicenter study focused on Israeli Druze patients. Using exome-sequencing, we identified previously undetected genetic causes in nearly 20% of patients, including a new and population-specific WDR19 homozygous pathogenic variant. This mutation has not been previously described; it is extremely rare globally but is common among the Druze, which highlights the importance of studying minority populations with high rates of CKD. Our findings provide insights into the genetic basis of end-stage kidney disease in the Israeli Druze, expand the WDR19 phenotypic spectrum, and emphasize the potential value of genetic testing in such populations.


Asunto(s)
Fallo Renal Crónico , Insuficiencia Renal Crónica , Adulto , Humanos , Grupos Minoritarios , Israel/epidemiología , Marcadores Genéticos , Estudios Transversales , Fallo Renal Crónico/epidemiología , Fallo Renal Crónico/genética , Fallo Renal Crónico/terapia , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/diagnóstico , Poblaciones Minoritarias, Vulnerables y Desiguales en Salud
4.
J Med Genet ; 60(11): 1133-1141, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37460201

RESUMEN

BACKGROUND: SUMOylation involves the attachment of small ubiquitin-like modifier (SUMO) proteins to specific lysine residues on thousands of substrates with target-specific effects on protein function. Sentrin-specific proteases (SENPs) are proteins involved in the maturation and deconjugation of SUMO. Specifically, SENP7 is responsible for processing polySUMO chains on targeted substrates including the heterochromatin protein 1α (HP1α). METHODS: We performed exome sequencing and segregation studies in a family with several infants presenting with an unidentified syndrome. RNA and protein expression studies were performed in fibroblasts available from one subject. RESULTS: We identified a kindred with four affected subjects presenting with a spectrum of findings including congenital arthrogryposis, no achievement of developmental milestones, early respiratory failure, neutropenia and recurrent infections. All died within four months after birth. Exome sequencing identified a homozygous stop gain variant in SENP7 c.1474C>T; p.(Gln492*) as the probable aetiology. The proband's fibroblasts demonstrated decreased mRNA expression. Protein expression studies showed significant protein dysregulation in total cell lysates and in the chromatin fraction. We found that HP1α levels as well as different histones and H3K9me3 were reduced in patient fibroblasts. These results support previous studies showing interaction between SENP7 and HP1α, and suggest loss of SENP7 leads to reduced heterochromatin condensation and subsequent aberrant gene expression. CONCLUSION: Our results suggest a critical role for SENP7 in nervous system development, haematopoiesis and immune function in humans.

5.
Hum Genomics ; 17(1): 30, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36978159

RESUMEN

BACKGROUND: The American College of Medical Genetics and Genomics (ACMG) recently published new tier-based carrier screening recommendations. While many pan-ethnic genetic disorders are well established, some genes carry pathogenic founder variants (PFVs) that are unique to specific ethnic groups. We aimed to demonstrate a community data-driven approach to creating a pan-ethnic carrier screening panel that meets the ACMG recommendations. METHODS: Exome sequencing data from 3061 Israeli individuals were analyzed. Machine learning determined ancestries. Frequencies of candidate pathogenic/likely pathogenic (P/LP) variants based on ClinVar and Franklin were calculated for each subpopulation based on the Franklin community platform and compared with existing screening panels. Candidate PFVs were manually curated through community members and the literature. RESULTS: The samples were automatically assigned to 13 ancestries. The largest number of samples was classified as Ashkenazi Jewish (n = 1011), followed by Muslim Arabs (n = 613). We detected one tier-2 and seven tier-3 variants that were not included in existing carrier screening panels for Ashkenazi Jewish or Muslim Arab ancestries. Five of these P/LP variants were supported by evidence from the Franklin community. Twenty additional variants were detected that are potentially pathogenic tier-2 or tier-3. CONCLUSIONS: The community data-driven and sharing approaches facilitate generating inclusive and equitable ethnically based carrier screening panels. This approach identified new PFVs missing from currently available panels and highlighted variants that may require reclassification.


Asunto(s)
Etnicidad , Genómica , Humanos , Etnicidad/genética , Árabes , Pruebas Genéticas
6.
Dig Liver Dis ; 55(7): 880-887, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36740502

RESUMEN

BACKGROUND: Autosomal recessive conditions are common in consanguineous populations. Since consanguinity is common in the Israeli Arab population, we evaluated the rate of MUTYH polyposis (MAP) among polyposis patients in this population and studied Pathogenic Variants (PVs) spectrum. METHODS: We reviewed health records of all Arab and Druze polyposis patients referred for counseling during 2013-2020 who fulfilled the Israeli Genetic Society criteria for MUTYH/APC testing, in a tertiary center in Northern Israel and four additional gastro-genetic clinics in Israel. RESULTS: The Northern cohort included 37 patients from 30 unrelated families; 8(26.6%) carried bi-allelic MUTYH PVs. The major variant p.Glu452del was detected in 6/8 Druze and Muslim families who shared the same haplotype. Other PVs detected in both cohorts included p.Tyr56Ter, p.His57Arg, c.849+3A>C, p.Ala357fs, and p.Tyr151Cys. Among bi-allelic carriers, 88% reported consanguinity, and 100% had positive family history for polyposis or colorectal cancer (CRC). Generally, the age of CRC was 10 years younger than reported in the general MAP population. CONCLUSIONS: MAP accounted for 27% of polyposis cases in the Arab population of Northern Israel. PVs spectrum is unique, with high frequency of the founder variant p.Glu452del. Our results may inform the genetic testing strategy in the Israeli Arab population.


Asunto(s)
Neoplasias Colorrectales , Predisposición Genética a la Enfermedad , Humanos , Niño , Israel/epidemiología , Prevalencia , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Poblaciones Minoritarias, Vulnerables y Desiguales en Salud , Mutación
7.
Fam Cancer ; 21(3): 289-294, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-33999380

RESUMEN

Germline pathogenic variants (PVs) in BRCA1/BRCA2 are well-established risk factors for breast cancer (BC) and/or ovarian cancer (OC). Founder PVs have been described in BRCA1/ BRCA2 in several genetic isolates. The Christian Arab population in the Middle East is a relatively isolated ethnic group, yet founder, or recurrent BRCA1/BRCA2 PVs have not been reported in this population. In this study we describe PVs detected in cancer susceptibility genes among a cohort of Christian Arabs from Israel. We reviewed patient records from the Oncogenetic clinic at Rambam Health Care Campus during the years 2013- mid 2020. Thirty-five unrelated Christian Arab patients, with personal or family history of BC and/or OC underwent BRCA1/BRCA2 (14/35) testing or cancer gene panel testing (21/35) as part of their diagnostic workup. Three clinically significant variants in BRCA2, CHEK2 and RAD51C were found in 7/35 patients (20%). A recurrent duplication of the BRCA2 genomic region, encompassing exons 5-10 and the 5' portion of exon 11, was found in 5/33 (15.2%) patients for whom copy number variants (CNVs) analysis was performed. We identified a recurrent pathogenic BRCA2 duplication in Christian Arab patients with a personal/ family history of BC and/or OC. Our findings emphasize the importance of inclusion of CNVs analysis in BRCA1/BRCA2 genetic testing, and specifically for Christian Arab patients suspected of hereditary BC and/or OC.


Asunto(s)
Proteína BRCA2 , Neoplasias de la Mama , Neoplasias Ováricas , Árabes/genética , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Exones , Femenino , Duplicación de Gen , Genes BRCA2 , Predisposición Genética a la Enfermedad , Humanos , Israel , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/genética
8.
Front Immunol ; 12: 608604, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248927

RESUMEN

Background and Objectives: Atypical hemolytic uremic syndrome (aHUS) is mostly attributed to dysregulation of the alternative complement pathway (ACP) secondary to disease-causing variants in complement components or regulatory proteins. Hereditary aHUS due to C3 disruption is rare, usually caused by heterozygous activating mutations in the C3 gene, and transmitted as autosomal dominant traits. We studied the molecular basis of early-onset aHUS, associated with an unusual finding of a novel homozygous activating deletion in C3. Design Setting Participants & Measurements: A male neonate with eculizumab-responsive fulminant aHUS and C3 hypocomplementemia, and six of his healthy close relatives were investigated. Genetic analysis on genomic DNA was performed by exome sequencing of the patient, followed by targeted Sanger sequencing for variant detection in his close relatives. Complement components analysis using specific immunoassays was performed on frozen plasma samples from the patient and mother. Results: Exome sequencing revealed a novel homozygous variant in exon 26 of C3 (c.3322_3333del, p.Ile1108_Lys1111del), within the highly conserved thioester-containing domain (TED), fully segregating with the familial disease phenotype, as compatible with autosomal recessive inheritance. Complement profiling of the patient showed decreased C3 and FB levels, with elevated levels of the terminal membrane attack complex, while his healthy heterozygous mother showed intermediate levels of C3 consumption. Conclusions: Our findings represent the first description of aHUS secondary to a novel homozygous deletion in C3 with ensuing unbalanced C3 over-activation, highlighting a critical role for the disrupted C3-TED domain in the disease mechanism.


Asunto(s)
Síndrome Hemolítico Urémico Atípico/diagnóstico , Síndrome Hemolítico Urémico Atípico/genética , Secuencia de Bases/genética , Complemento C3/genética , Eliminación de Secuencia , Síndrome Hemolítico Urémico Atípico/congénito , Síndrome Hemolítico Urémico Atípico/etiología , Preescolar , Activación de Complemento , Complejo de Ataque a Membrana del Sistema Complemento , Genes Recesivos , Homocigoto , Humanos , Masculino , Secuenciación del Exoma
9.
Am J Med Genet A ; 185(10): 3161-3166, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34145742

RESUMEN

Tel Hashomer camptodactyly syndrome is a long-known entity characterized by camptodactyly with muscular hypoplasia, skeletal dysplasia, and abnormal palmar creases. Currently, the genetic basis for this disorder is unknown, thus there is a possibility that this clinical presentation may be contained within another genetic diagnosis. Here, we present a multiplex family with a previous clinical diagnosis of Tel Hashomer camptodactyly syndrome. Whole exome sequencing and pedigree-based analysis revealed a novel hemizygous truncating variant c.269_270dup (p.Phe91Alafs*34) in the FGD1 gene (NM_004463.3) in all three symptomatic patients, congruous with a diagnosis of Aarskog-Scott syndrome. Our report adds to the limited data on Aarskog-Scott syndrome, and emphasizes the importance of unbiased comprehensive molecular testing toward establishing a diagnosis for genetic syndromes with unknown genetic basis.


Asunto(s)
Enanismo/diagnóstico , Cara/anomalías , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico , Predisposición Genética a la Enfermedad , Genitales Masculinos/anomalías , Factores de Intercambio de Guanina Nucleótido/genética , Deformidades Congénitas de la Mano/diagnóstico , Cardiopatías Congénitas/diagnóstico , Defectos del Tabique Interatrial/diagnóstico , Hirsutismo/diagnóstico , Enfermedades Musculares/diagnóstico , Diagnóstico Diferencial , Enanismo/genética , Enanismo/patología , Cara/patología , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Genitales Masculinos/patología , Deformidades Congénitas de la Mano/genética , Deformidades Congénitas de la Mano/patología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Defectos del Tabique Interatrial/genética , Hirsutismo/genética , Humanos , Deformidades Congénitas de las Extremidades , Masculino , Enfermedades Musculares/genética , Linaje , Secuenciación del Exoma
10.
Mol Genet Metab Rep ; 26: 100699, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33457206

RESUMEN

Iron­sulfur clusters (FeSCs) are vital components of a variety of essential proteins, most prominently within mitochondrial respiratory chain complexes I-III; Fe-S assembly and distribution is performed via multi-step pathways. Variants affecting several proteins in these pathways have been described in genetic disorders, including severe mitochondrial disease. Here we describe a Christian Arab kindred with two infants that died due to mitochondrial disorder involving Fe-S containing respiratory chain complexes and a third sibling who survived the initial crisis. A homozygous missense variant in NFS1: c.215G>A; p.Arg72Gln was detected by whole exome sequencing. The NFS1 gene encodes a cysteine desulfurase, which, in complex with ISD11 and ACP, initiates the first step of Fe-S formation. Arginine at position 72 plays a role in NFS1-ISD11 complex formation; therefore, its substitution with glutamine is expected to affect complex stability and function. Interestingly, this is the only pathogenic variant ever reported in the NFS1 gene, previously described once in an Old Order Mennonite family presenting a similar phenotype with intra-familial variability in patient outcomes. Analysis of datasets from both populations did not show a common haplotype, suggesting this variant is a recurrent de novo variant. Our report of the second case of NFS1-related mitochondrial disease corroborates the pathogenicity of this recurring variant and implicates it as a hot-spot variant. While the genetic resolution allows for prenatal diagnosis for the family, it also raises critical clinical questions regarding follow-up and possible treatment options of severely affected and healthy homozygous individuals with mitochondrial co-factor therapy or cysteine supplementation.

11.
Clin Dysmorphol ; 30(2): 71-75, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32925198

RESUMEN

Feingold syndrome 1 (FGLDS1) is an autosomal dominant malformation syndrome, characterized by skeletal anomalies, microcephaly, facial dysmorphism, gastrointestinal atresias and learning disabilities. Mutations in the MYCN gene are known to be the cause of this syndrome. Congenital absence of the flexor pollicis longus (CAFPL) tendon is a rare hand anomaly. Most cases are sporadic and no genetic variants have been described associated with this abnormality. We describe here a pedigree combining familial CAFPL tendon as a feature of FGLDS1. Molecular analyses of whole exome sequence data in five affected family members spanning three generations of this family revealed a novel mutation in the MYCN gene (c.1171C>T; p.Arg391Cys). Variants in MYCN have not been published in association with isolated or syndromic CAFPL tendon, nor has this been described as a skeletal feature of Feingold syndrome. This report expands on the clinical and molecular spectrum of MYCN-related disorders and highlights the importance of MYCN protein in normal human thumb and foramen development.


Asunto(s)
Párpados/anomalías , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Deformidades Congénitas de las Extremidades/diagnóstico , Deformidades Congénitas de las Extremidades/genética , Microcefalia/diagnóstico , Microcefalia/genética , Mutación , Proteína Proto-Oncogénica N-Myc/genética , Tendones/anomalías , Pulgar/anomalías , Fístula Traqueoesofágica/diagnóstico , Fístula Traqueoesofágica/genética , Adulto , Anciano , Niño , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Modelos Moleculares , Proteína Proto-Oncogénica N-Myc/química , Linaje , Fenotipo , Relación Estructura-Actividad , Secuenciación del Exoma
12.
Eur J Med Genet ; 63(2): 103643, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30922925

RESUMEN

Majewski Osteodysplastic Primordial Dwarfism type II (MOPDII) is a form of dwarfism associated with severe microcephaly, characteristic skeletal findings, distinct dysmorphic features and increased risk for cerebral infarctions. The condition is caused by bi-allelic loss-of-function variants in the gene PCNT. Here we describe the identification of a novel founder pathogenic variant c.3465-1G > A observed in carriers from multiple Druze villages in Northern Israel. RNA studies show that the variant results in activation of a cryptic splice site causing a coding frameshift. The study was triggered by the diagnosis of a single child with MOPDII and emphasizes the advantages of applying next generation sequencing technologies in community genetics and the importance of establishing population-specific sequencing databases.


Asunto(s)
Antígenos/genética , Efecto Fundador , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación , Adolescente , Alelos , Línea Celular Tumoral , Análisis Mutacional de ADN , Enanismo/diagnóstico , Enanismo/genética , Facies , Femenino , Retardo del Crecimiento Fetal/diagnóstico , Retardo del Crecimiento Fetal/genética , Estudios de Asociación Genética/métodos , Pruebas Genéticas , Humanos , Israel , Masculino , Microcefalia/diagnóstico , Microcefalia/genética , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Linaje , Fenotipo , Secuenciación del Exoma
13.
J Med Genet ; 57(7): 500-504, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-30858171

RESUMEN

BACKGROUND: Chromosomal instability, as reflected by structural or copy-number changes, is a known cancer characteristic but are rarely observed in healthy tissue. Mutations in DNA repair genes disrupt the maintenance of DNA integrity and predispose to hereditary cancer syndromes. OBJECTIVE: To clinically characterise and genetically diagnose two reportedly unrelated patients with unique cancer syndromes, including multiorgan tumourogenesis (patient 1) and early-onset acute myeloid leukaemia (patient 2), both displaying unique peripheral blood karyotypes. METHODS: Genetic analysis in patient 1 included TruSight One panel and whole-exome sequencing, while patient 2 was diagnosed by FoundationOne Heme genomic analysis; Sanger sequencing was used for mutation confirmation in both patients. Karyotype analysis was performed on peripheral blood, bone marrow and other available tissues. RESULTS: Both patients were found homozygous for CHEK2 c.499G>A; p.Gly167Arg and exhibited multiple different chromosomal translocations in 30%-60% peripheral blood lymphocytes. This karyotype phenotype was not observed in other tested tissues or in an ovarian cancer patient with a different homozygous missense mutation in CHEK2 (c.1283C>T; p.Ser428Phe). CONCLUSIONS: The multiple chromosomal translocations in patient lymphocytes highlight the role of CHK2 in DNA repair. We suggest that homozygosity for p.Gly167Arg increases patients' susceptibility to non-accurate correction of DNA breaks and possibly explains their increased susceptibility to either multiple primary tumours during their lifetime or early-onset tumourigenesis.


Asunto(s)
Quinasa de Punto de Control 2/genética , Predisposición Genética a la Enfermedad , Neoplasias/genética , Translocación Genética/genética , Adulto , Anciano , Quinasa de Punto de Control 2/ultraestructura , Femenino , Homocigoto , Humanos , Cariotipo , Masculino , Persona de Mediana Edad , Neoplasias/patología , Linaje , Conformación Proteica
14.
Genet Med ; 22(2): 389-397, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31388190

RESUMEN

PURPOSE: Sifrim-Hitz-Weiss syndrome (SIHIWES) is a recently described multisystemic neurodevelopmental disorder caused by de novo variants inCHD4. In this study, we investigated the clinical spectrum of the disorder, genotype-phenotype correlations, and the effect of different missense variants on CHD4 function. METHODS: We collected clinical and molecular data from 32 individuals with mostly de novo variants in CHD4, identified through next-generation sequencing. We performed adenosine triphosphate (ATP) hydrolysis and nucleosome remodeling assays on variants from five different CHD4 domains. RESULTS: The majority of participants had global developmental delay, mild to moderate intellectual disability, brain anomalies, congenital heart defects, and dysmorphic features. Macrocephaly was a frequent but not universal finding. Additional common abnormalities included hypogonadism in males, skeletal and limb anomalies, hearing impairment, and ophthalmic abnormalities. The majority of variants were nontruncating and affected the SNF2-like region of the protein. We did not identify genotype-phenotype correlations based on the type or location of variants. Alterations in ATP hydrolysis and chromatin remodeling activities were observed in variants from different domains. CONCLUSION: The CHD4-related syndrome is a multisystemic neurodevelopmental disorder. Missense substitutions in different protein domains alter CHD4 function in a variant-specific manner, but result in a similar phenotype in humans.


Asunto(s)
Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Trastornos del Neurodesarrollo/genética , Anomalías Múltiples/genética , Adolescente , Adulto , Niño , Preescolar , Ensamble y Desensamble de Cromatina/genética , Discapacidades del Desarrollo/genética , Femenino , Estudios de Asociación Genética , Genotipo , Pérdida Auditiva/genética , Cardiopatías Congénitas/genética , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/genética , Masculino , Megalencefalia/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Anomalías Musculoesqueléticas/genética , Mutación Missense/genética , Fenotipo , Síndrome , Factores de Transcripción/genética
15.
Am J Med Genet A ; 182(1): 205-212, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31697046

RESUMEN

Agenesis of the corpus callosum (ACC) is a common prenatally-detected brain anomaly. Recently, an association between mutations in the DCC Netrin 1 receptor (DCC) gene and ACC, with or without mirror movements, has been demonstrated. In this manuscript, we present a family with a novel heterozygous frameshift mutation in DCC, review the available literature, and discuss the challenges involved in the genetic counseling for recently discovered disorders with paucity of medical information. We performed whole exome sequencing in a healthy nonconsanguineous couple that underwent two pregnancy terminations due to prenatal diagnosis of ACC. A heterozygous variant c.2774dupA (p.Asn925Lysfs*17) in the DCC gene was demonstrated in fetal and paternal DNA samples, as well as in a healthy 4-year-old offspring. When directly questioned, both father and child reported having mirror movements not affecting quality of life. Segregation analysis demonstrated the variant in three paternal siblings, two of them having mirror movements. Brain imaging revealed normal corpus callosum. Summary of literature data describing heterozygous loss-of-function variants in DCC (n = 61) revealed 63.9% penetrance for mirror movements, 9.8% for ACC, and 5% for both. No significant neurodevelopmental abnormalities were reported among the seven published patients with DCC loss-of-function variants and ACC. Prenatal diagnosis of ACC should prompt a specific anamnesis regarding any neurological disorder, as well as intentional physical examination of both parents aimed to detect mirror movements. In suspicious cases, detection of DCC pathogenic variants might markedly improve the predicted prognosis, alleviate the parental anxiety, and possibly prevent pregnancy termination.


Asunto(s)
Agenesia del Cuerpo Calloso/genética , Receptor DCC/genética , Trastornos del Movimiento/genética , Malformaciones del Sistema Nervioso/genética , Agenesia del Cuerpo Calloso/diagnóstico por imagen , Agenesia del Cuerpo Calloso/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Niño , Preescolar , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/fisiopatología , Femenino , Asesoramiento Genético , Heterocigoto , Humanos , Masculino , Trastornos del Movimiento/diagnóstico por imagen , Trastornos del Movimiento/fisiopatología , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Malformaciones del Sistema Nervioso/fisiopatología , Penetrancia , Embarazo , Diagnóstico Prenatal
17.
J Clin Immunol ; 39(4): 430-439, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31079270

RESUMEN

PURPOSE: This study aimed to characterize the clinical phenotype, genetic basis, and consequent immunological phenotype of a boy with severe infantile-onset colitis and eosinophilic gastrointestinal disease, and no evidence of recurrent or severe infections. METHODS: Trio whole-exome sequencing (WES) was utilized for pathogenic variant discovery. Western blot (WB) and immunohistochemical (IHC) staining were used for protein expression analyses. Immunological workup included in vitro T cell studies, flow cytometry, and CyTOF analysis. RESULTS: WES revealed a homozygous variant in the capping protein regulator and myosin 1 linker 2 (CARMIL2) gene: c.1590C>A; p.Asn530Lys which co-segregated with the disease in the nuclear family. WB and IHC analyses demonstrated reduced protein levels in patient's cells compared with controls. Moreover, comprehensive immunological workup revealed severely diminished blood-borne regulatory T cell (Treg) frequency and impaired in vitro CD4+ T cell proliferation and Treg generation. CyTOF analysis showed significant shifts in the patient's innate and adaptive immune cells compared with healthy controls and ulcerative colitis patients. CONCLUSIONS: Pathogenic variants in CARMIL2 have been implicated in an immunodeficiency syndrome characterized by recurrent infections, occasionally with concurrent chronic diarrhea. We show that CARMIL2-immunodeficiency is associated with significant alterations in the landscape of immune populations in a patient with prominent gastrointestinal disease. This case provides evidence that CARMIL2 should be a candidate gene when diagnosing children with very early onset inflammatory and eosinophilic gastrointestinal disorders, even when signs of immunodeficiency are not observed.


Asunto(s)
Colitis/diagnóstico , Colitis/etiología , Enteritis/diagnóstico , Enteritis/etiología , Eosinofilia/diagnóstico , Eosinofilia/etiología , Gastritis/diagnóstico , Gastritis/etiología , Homocigoto , Proteínas de Microfilamentos/genética , Mutación , Fenotipo , Edad de Inicio , Secuencia de Aminoácidos , Niño , Preescolar , Análisis Mutacional de ADN , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Inmunohistoquímica , Inmunofenotipificación , Masculino , Proteínas de Microfilamentos/química , Modelos Moleculares , Relación Estructura-Actividad , Secuenciación del Exoma
18.
J Hum Genet ; 64(6): 589-595, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30903008

RESUMEN

Translation of mitochondrial-specific DNA is required for proper mitochondrial function and energy production. For this purpose, an elaborate network of dedicated molecular machinery including initiation, elongation and termination factors exists. We describe a patient with an unusual phenotype and a novel homozygous missense variant in TUFM (c.344A>C; p.His115Pro), encoding mtDNA translation elongating factor Tu (EFTu). To date, only four patients have been reported with bi-allelic mutations in TUFM, leading to combined oxidative phosphorylation deficiency 4 (COXPD4) characterized by severe early-onset lactic acidosis and progressive fatal infantile encephalopathy. The patient presented here expands the phenotypic features of TUFM-related disease, exhibiting lactic acidosis and dilated cardiomyopathy without progressive encephalopathy. This warrants the inclusion of TUFM in differential diagnosis of metabolic cardiomyopathy. Cases that further refine genotype-phenotype associations and characterize the molecular basis of mitochondrial disorders allow clinicians to predict disease prognosis, greatly impacting patient care, as well as provide families with reproductive planning options.


Asunto(s)
Acidosis Láctica/genética , Cardiomiopatías/genética , Errores Innatos del Metabolismo/genética , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Factor Tu de Elongación Peptídica/genética , Acidosis Láctica/fisiopatología , Secuencia de Aminoácidos/genética , Cardiomiopatías/fisiopatología , Consanguinidad , ADN Mitocondrial/genética , Femenino , Homocigoto , Humanos , Lactante , Masculino , Errores Innatos del Metabolismo/fisiopatología , Enfermedades Mitocondriales/fisiopatología , Mutación , Fosforilación Oxidativa , Secuenciación del Exoma
19.
J Pediatr Gastroenterol Nutr ; 68(3): 325-333, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30418410

RESUMEN

OBJECTIVES: Loss of the complement inhibitor CD55 leads to a syndrome of early-onset protein-losing enteropathy (PLE), associated with intestinal lymphangiectasia and susceptibility to large-vein thrombosis. The in vitro and short-term treatment benefits of eculizumab (C5-inhibitor) therapy for CD55-deficiency have been previously demonstrated. Here we present the 18-months treatment outcomes for 3 CD55-deficiency patients with sustained therapeutic response. METHODS: Three CD55-deficiency patients received off-label eculizumab treatment. Clinical and laboratory treatment outcomes included frequency and consistency of bowl movements, weight, patient/parent reports of overall well-being, and serum albumin and total protein levels. Membrane attack complex deposition on leukocytes was tested by flow cytometry, before and during eculizumab treatment. RESULTS: Marked clinical improvement was noted in all 3 patients with resolution of PLE manifestations, that is, diarrhea, edema, malabsorption, overall well-being, growth, and quality of life. In correlation with the clinical observations, we observed progress in all laboratory outcome parameters, including increase in albumin and total protein levels, and up to 80% reduction in membrane attack complex deposition on leukocytes (P < 0.001). The progress persisted over 18 months of treatment without any severe adverse events. CONCLUSIONS: CD55-deficiency patients present with early-onset diarrhea, edema, severe hypoalbuminemia, abdominal pain, and malnutrition. Targeted therapy with the terminal complement inhibitor eculizumab has positive clinical and laboratory outcomes in PLE related to CD55 loss-of-function mutations, previously a life-threatening condition. Our results demonstrate the potential of genetic diagnosis to guide tailored treatment, and underscore the significant role of the complement system in the intestine.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Antígenos CD55/deficiencia , Inactivadores del Complemento/administración & dosificación , Enteropatías Perdedoras de Proteínas/tratamiento farmacológico , Adulto , Niño , Preescolar , Ensayos de Uso Compasivo , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Estudios de Seguimiento , Humanos , Infusiones Intravenosas , Linfangiectasia Intestinal/complicaciones , Linfangiectasia Intestinal/patología , Uso Fuera de lo Indicado , Estudios Prospectivos , Enteropatías Perdedoras de Proteínas/etiología , Calidad de Vida , Inducción de Remisión
20.
Nat Commun ; 9(1): 4065, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30283131

RESUMEN

Mitochondrial protein synthesis requires charging mt-tRNAs with their cognate amino acids by mitochondrial aminoacyl-tRNA synthetases, with the exception of glutaminyl mt-tRNA (mt-tRNAGln). mt-tRNAGln is indirectly charged by a transamidation reaction involving the GatCAB aminoacyl-tRNA amidotransferase complex. Defects involving the mitochondrial protein synthesis machinery cause a broad spectrum of disorders, with often fatal outcome. Here, we describe nine patients from five families with genetic defects in a GatCAB complex subunit, including QRSL1, GATB, and GATC, each showing a lethal metabolic cardiomyopathy syndrome. Functional studies reveal combined respiratory chain enzyme deficiencies and mitochondrial dysfunction. Aminoacylation of mt-tRNAGln and mitochondrial protein translation are deficient in patients' fibroblasts cultured in the absence of glutamine but restore in high glutamine. Lentiviral rescue experiments and modeling in S. cerevisiae homologs confirm pathogenicity. Our study completes a decade of investigations on mitochondrial aminoacylation disorders, starting with DARS2 and ending with the GatCAB complex.


Asunto(s)
Cardiomiopatías/enzimología , Cardiomiopatías/genética , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/genética , Mutación/genética , Transferasas de Grupos Nitrogenados/genética , Subunidades de Proteína/genética , Secuencia de Aminoácidos , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Lactante , Recién Nacido , Lentivirus/metabolismo , Masculino , Modelos Moleculares , Miocardio/patología , Miocardio/ultraestructura , Transferasas de Grupos Nitrogenados/química , Transferasas de Grupos Nitrogenados/metabolismo , Fosforilación Oxidativa , Linaje , Biosíntesis de Proteínas , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...